On group gradings on PI-algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Gradings on Simple Lie Algebras in Positive Characteristic

In this paper we describe all gradings by a finite abelian group G on the following Lie algebras over an algebraically closed field F of characteristic p = 2: sln(F ) (n not divisible by p), son(F ) (n ≥ 5, n = 8) and spn(F ) (n ≥ 6, n even).

متن کامل

Gradings on Symmetric Composition Algebras

The group gradings on the symmetric composition algebras over arbitrary fields are classified. Applications of this result to gradings on the exceptional simple Lie algebras are considered too.

متن کامل

Rational Group Actions on Affine Pi-algebras

Let R be an affine PI-algebra over an algebraically closed field k and let G be an affine algebraic k-group that acts rationally by algebra automorphisms on R. For R prime and G a torus, we show that R has only finitely many G-prime ideals if and only if the action of G on the center of R is multiplicity free. This extends a standard result on affine algebraic G-varieties. Under suitable hypoth...

متن کامل

Fine Gradings on Simple Classical Lie Algebras

The fine abelian group gradings on the simple classical Lie algebras (including D4) over algebraically closed fields of characteristic 0 are determined up to equivalence. This is achieved by assigning certain invariant to such gradings that involve central graded division algebras and suitable sesquilinear forms on free modules over them.

متن کامل

Gradings on simple algebras of finitary matrices

We describe gradings by finite abelian groups on the associative algebras of infinite matrices with finitely many nonzero entries, over an algebraically closed field of characteristic zero.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2015

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2014.12.042